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The Pollard’s Rho Method for Factoring Numbers

We are all familiar with the concepts of prime aminposite numbers. We also know
that a number is either prime or a product of panihe Fundamental Theorem of Arithmetic
states that every integee 2 is either a prime or a product of primes, ar@gioduct is unique
apart from the order in which the factors appeang, 55). The number 7, for example, is a
prime number. It has only two factors, itself and®h the other hand 24 has a prime
factorization of 2 x 3. Because its factors are not just 24 and 1, 2drisidered a composite
number. The numbers 7 and 24 are easier to fawarlarger numbers. We will look at the
Sieve of Eratosthenes, an efficient factoring méttow dealing with smaller numbers, followed
by Pollard’s rho, a method that allows us how mdalarge numbers into their primes.

The Sieve of Eratosthenes allows us to find timg@numbers up to and including a
particular numbem. First, we find the prime numbers that are less thr equal ta/n. Then we
use these primes to see which of the numiders n -k, ...,n - 2,n - 1< nthese primes properly
divide. The remaining numbers are the prime numthexsare greater thgm and less than or
equal ton. This method works because these prime numbeadleannot have any prime

factor less than or equahfa, as the number would then be composite. Als@rinot be the

product of two numbers greater than or equdhtcas the number would still be composite and

greater tham (Nagel, 51-52)
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We will now use the Sieve of Eratosthenes to fhmprime numbers between 1 and 31.

Since 5< /31 < 6, we will cross out all of the numbers betweean 31 that are properly

divisible by 2, 3, or 5. We do this because thegalvers are composite, as each has factors other
than itself and 1. For example, we cross the nurbderut because 2 divides it. Since 2 is a

factor of 14, 14 is clearly composite. The remajmumbers are the prime numbers from 2 to 31
inclusive. They are 2, 3, 5, 7, 11, 13, 17, 19,288,and 31. This method is effective for finding
the prime numbers up to and including a numbethat is relatively small. If we needed to find
the primes from 2 to £pwe would have to do approximately*tfial divisions using the Sieve

of Eratosthenes. Since this method is not efficientarge numbers, we can use Pollard’s rho to
factor large numbers into their primes.

Before we study how Pollard’s rho works on papex will first look at the pseudo code
that can be implemented into a computer programguscomputer language such as C++.
Once the pseudo code is correctly translated h@specific programming language, the
program will output the prime factorization for amber (small or large) that we input. Look at
Figure 1, which portrays the pseudo code for Pdlkatho. The numbers on the left represent the

steps of the algorithm.

POLLARD-RHO)

1) i€l

(2) x, €RANDOM(0,n - 1)
B) y&Ex

4) k€2

(5) while TRUE

6) doi<ci+1

7) X € (&.1- 1)modn
(8) d < gcd §/ - x;, n)
9) if d#1andd#n
(20) then printd

(11) ifi=k

(12) theny < x

(13) k < 2k

Figure 1
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We will demonstrate this algorithm step-by steddmtoring 1909 into its primes. In step
1, we initializei to be 1. Thus, we will start & In step 2, we set to a random number
between 0 and -1. For the purposes of this paper, we wilbget 2. For step 3, we store our x
as our y. Thus, we save 2 as gwalue. Line 5 starts our process of finding fastor a number
n; in our case, 1909. Line 6 increments our valuiesof that we produce xx,, X3 and so on
infinitely.

We will now proceed to compute Pollard’s rho by ¢haWe start with the formulba , ; =
(%2 - 1) modn, wherei denotes thé" x-term anch denotes the number to be factored. We
already sex; = 2, so using the formula, we obtain=(2 - 1) mod 1909 = 3 mod 1909 = 3.
Next,xs = (3 - 1) mod 1909 = 8 mod 1909 = 8. Similary= 63.

Following this patternxs = 150,xs = 1500,X; = 1197 Xg = 1058 X9 = 689,x10 = 1288 X11
= 22,x12 = 483,x13 = 390, andk 4= 1288. Notice that 1288 repeats itself. We shiftattention
to Figure 2 below. Please note that the valuestddrwyi represent oux; values. Notice the

values ofx;o, X11, X12 andx; 3 repeat infinitely in a loop, thus forming a rho.

ags, =8 Figure 2

1197 350
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Since our; values represent the remainders, these valuebavi# to repeat since there
can only be 1909 possible remainders for the nurh®@9. This is because when dividing a
number by 1909, the remainder is always betweardL808. So, if we run the algorithm for
1910 steps, at least one of th&sealues (our remainders) will have to appear mbaa tonce.
We should find at most 1909 remainders. Howeveprattice, we generally repeat well before
our remainders are used up. In this case, we repedier having seen 14 different remainders.

The next step to finding the primes of 1909 usmg factoring method is to find= (y —
Xi, n), the greatest common divisor. Note that thisnis 8 of the pseudo code. We need to find
oury-values in order to find the greatest common divi$o do this, we must first understand
the pseudo code. Note that line 4 of the pseude tutializes somé to 2. We jump to line 11,
where there is an if-statement that is utilized mie k. When this happens, the currenvalue
is stored as gVvalue, and the currektvalue is multiplied by 2In the case of our example, we
storex; as ay-value initially. Then we look at. Sincei =k =2, we utilize our if-statement. Our
Xo-vlaue is stored asyavalue. Also, ouk is doubled to 4. Thig-value remains the same until
=k again. So we stong as oury-value. Similarly, we storgs andx;sasy-values. We can
continue this infinitely, as long as ouvalues are powers of 2. Our stosedalues aravritten in
purple in Figure 2.

Now we can find the greatest common divisor. Titet €alculation that we perform is (2
—2,1909) = (0, 1909) = 1909. We use the Euclidilgorithm to find the greatest common
divisors; however, since showing the steps isvéatrimatter, we will proceed without
explanation. We change oywvalues accordingly and proceed until we find theaggst common
divisor. When we subtract odyo from our curreny-value, we find the greatest common divisor.

Thus, (1058 — 1288, 1909) = (-230, 1909) = 23. Lablkne 9 of the pseudo code. Sirtte 1
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andd # n, the program will prind (Cormen, 845-847). In our case, the program wotiltt @3

as one of the factors of 190%his factor also happens to be prime, which istweare hoping
for. We use this method of finding the greatest wmm divisor because it is known to work; it is
a successful heuristic technique. Look at Figubeldw, which shows the-values, they-

values, the calculations for the greatest commuisal, and the greatest common divisor for the

first twentyi-values.

Figure 3:

i Xi y (Y- %, 1909) gcd

1 2 2 (2-2, 1909) 1909
2 3=(2-1) mod 1909 | 3 (3-3, 1909) 1909
3 8 = (3-1) mod 1909 | 3 (3-8, 1909) 1

4 63 =(8-1) mod 1909 | 63 (63-63, 1909) 1909
5 150 = (63-1) mod 1909 63 (63_150’ 1909) 1

6 1500= (156-1) mod 1909 | §3 (63-1500, 1909 1

7 1187= (15064) mod 1909 | §3 (63-1197,1909) 1

8 1058= (11971) mod 1909 | 158 (1058-1058, 1909) | 1909
9 689= (1058-1) mod 1909 | 1058 (1058-689, 1909) | 1

10 1288= (6891) mod 1909 | 1058 (1058-1288, 1909) | 23

11 22=(1288-1) mod 1909 | 1058 (1058-1288, 1909) | 1

12 483= (22-1) mod 1909| 1058 (1058-483, 1909) | 1

13 390=(483-1) mod 1909 | 1058 (1058-390, 1909) | 1

14 1288= (396-1) mod 1909 | 1058 (1058-1288, 1909) | 23

15 22=(12881) mod 1909 | 1058 (1058-22, 1909) 1
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16 483= (22-1) mod 1909] 483 (483-483, 1909) 1909
17 300= (483-1) mod 1909 | 483 (483-390, 1909) 1
18 1288= (396-1) mod 1909 | 483 (483-1288,1909) | 1
19 22= (1288-1) mod 1909 | 483 (483-22,1909) | 1
20 483= (22-1) mod 1909| 483 (483-483, 1909) 1909

Thus, 1909 is composite. Pollard’s rho found 2Béa factor of 1909. In order to factor
the number further, we could run the algorithm 8red 1909/23 = 83.

Now we look at a larger number, 11347, to facting Pollard’s rho. As in the previous
example, we set; = 2. We findx; = 3,x4 = 63,X5 = 3968, ancs = 6734. Pollard’s rho will find
a prime factor after we reack We performd = (y - x, n) = (63 - 6734, 11347) = (-6671, 11347)
= 7. A second implementation of Pollard’s rho cand 11347/7 shows that our factors, which
are prime, of 11347 are 7 and 1621.

Now we will study how long it takes to repeat remaers; the repetition could occur
during early iterations or much later on. When iogkat 1909, our numbers started repeating at
x14. Note that it could take as many repetitions asglare remainders for a number to repeat.
When looking at 11347, it could potentially takeilx;;347t0 Start repeating the cycle and
forming the rho. We will look at Figure 4 to see first fifty remainders of 11347 using
Pollard’s rho. Notice how not one of these numbbepgats itself. If we were to continue trying
to find where the remainders repeat, we could firedrepetition as soon &s or as late ag;1347

so we will just stop here.



Figure 4:
Xp=2

Xe= 6734
x11= 8441
X16= 490
X21= 2750
X26= 8204
X31= 104
Xz6= 917
X41= 8462

Xs46 = 10997

Xo=3

X7= 4143
X12= 2667
X17= 1812
X22= 5397
Xo7= 6558
X32= 10815
X37= 1210
Xa2= 5873

X47 = 9029

X3=8

Xg= 7784
X13= 9666
x18= 4060
X23= 11206
Xo8= 2233
Xa3= 10695
Xag= 336
Xa3= 8595

Xag = 5992

X4= 63

Xg= 9022
X14= 357
X19= 7755
X24= 8533
X29= 4955
X34= 5264
Xz9= 10772
Xa4= 5054

Xq9 = 2155
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Xs = 3968
X10= 4452
X15= 2631
Xo0= 924
Xo5= 9736
Xz0= 8463
X35= 321
Xa0= 1561
Xs5= 818

X50 = 3101

We will factor one more number using Pollard’s:rh695. This is slightly different than

the other numbers, but we start the same way. Eifloelow demonstrates our process.

Figure 5:

i Xi y (Y- x, 1695) gcd

1 2 2 (2-2, 1695) 1695
2 3= (Z-1) mod 1695 3 (3-3, 1695) 1695
3 8= (3 - 1) mod 1695 3 (3-8, 1695) 1

4 63=(E-1)mod 1695 | 63 (63-63, 1695) | 1695
5 578= (63 1) mod 1695 | §3 (63-578, 1695) 5
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Pollard’s rho finds a factor of 5. So, we run Balls rho on 5 and 339, the quotient of

1695/5. Figure 6 shows us this process on the nug8s:

Figure 6:

i X; y (v - %, 339) gcd

1 2 2 (2-2, 339) 339
2 3=(Z-1) mod 339 3 (3-3, 339) 339
3 8=(3-1) mod 339| 3 (3-8, 339) 1

4 63=(8-1) mod 339 | 63 (63-63, 339) 339
5 239=(63-1) mod 339 | 63 (63-239,339) | 1

6 168=(239-1) mod 339 | 3 (63-168,339) | 3

We proceed to run Pollard’s rho on 3 and 339/3 8, &And Pollard’s rho finds 3 and 13
as prime factors of 1695. Thus, the prime factérs685 are 3, 5, and 113.

Pollard’s rho will not always work. For examplewill not factor 12 into its primes;
subsequently, the program will say that 12 is mpmumber. Look at the following table that

represents the process of Pollard’s rho on 12.

Figure 7:

i X; y (y-x, 12) gcd
1 2 2 (2-2,12) 12
2 3=(Z-1)mod12 |3 (3-3,12) 12
3 8=(F-1)mod12 |3 (3-8, 12) 1

4 3=(&-1)mod12 |3 (3-3,12) 12
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5 8=(F-1)mod12 |3 (3-8, 12) 1
6 3=(&-1)mod12 |3 (3-3,12) 12
7 8=(F-1)mod12 |3 (3-8, 12) 1
8 3=(&-1)mod12 |3 (3-3, 12) 12

Our program enters an infinite loopxat and it repeats 3 and 8 infinitely. We normally
can be sure it is prime because for puiK;, we are only going to subtract 3-3 and 3-8 indilyit
which are relatively prime to 12. Since our gretesnmon divisors are 12 and 1 respectively,
Pollard’s rho will assume 12 is prime, even thoiigh not. For example, if we wanted to factor
24, Pollard’s rho will say that the prime factof2d are 12 and 2. Thus, Pollard’s rho is not
completely reliable. Similarly, Pollard’s rho wilhd 4 and 6 to be prime, and possibly other
numbers.

Now we will perform analysis of Pollard’s rho. &irwe will look to see just how many
iterations it takes to actually find a prime factibwe are “lucky,” we should find our prime

factor by around/n iterations (Cormen 845). We will refer to two afrgrevious examples.

Note thaty/1909 ~ 6.6, so we could have been as lucky as to findodure divisor around six
or seven iterations. Unfortunately, it took us Latir tenth iteration to find our prime divisor.
For our example 11347, we expected to find our erilivisor around ten or eleven iterations,
but we were extremely lucky and found it at thefsiteration.

A probabilistic analysis explains why we can exgedind the factor so quickly. A
famous example of probabilistic analysis is thetlalay paradox,” which states that if there are
23 people in one room, there is a 50% chance wwbf those people have the same birthday.

We start this calculation with just one personhi@ toom. The probability that this person will
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not have the same birthday as anyone else in the ®365/365 = 100%. (Clearly this has to be
the case if there is only one person present.) Weall this event P(A). Next, we find the
probability that two people in the room do not hétwe same birthday. Note that these events are
independent of one another. We find the probabifigt the second person in the room does not
have the same birthday as anyone else in the robim probability is 364/365, and we will

denote this by P(B). We make this probability 3&&/®ecause there is a 1/365 chance that this
second person will have the same birthday as tee When we multiply P(A) and P(B) to get
(365/365)(364/365), we find there is approximate§9.73% chance that two people in the room
will not have the same birthday.

We continue this process in similar fashion. Froe¢ people in the room, when we
multiply (365/365)(364/365)(363/365), we find theseapproximately a 99.18% chance that
three people in the room will not have the samehbay. We continue the calculation up until
we have 23 people. We multiply (365/365)(364/3663(365)(362/365)...(343/365)(342/365),
which approximately equals a 50.0% chance thatgeaple in the room will not have the same
birthday. Of course, we could rephrase it to s&ydhs approximately a 50% chance that two

people in the room will have the same birthday wiieme are 23 people present. Note that 23

V365 ~ 19. Of course, this probability will increase asrmpeople are added to the room.

A similar probabilistic analysis is used for detaring how likely it is that our
remainders will repeat. Note that this procedurthéssame as the birthday paradox. We will
look at our example of 1909 to illustrate this. Wek for the probability that choosing one
number out of 1909 possible remainders will beetléht from the rest of the remainders. This
probability is (1909/1909) = 1. We proceed to fthé probability that choosing two numbers out

of 1909 possible remainders will be different freach other. When we multiply
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(1909/1909)(1908/1909), we find there is approxatyaa 99.95% chance that choosing two
numbers out of 1909 possible remainders will beeteht from one another. We continue this
pattern. When we multiply (1909/1909)(1908/1909)(2/4.909)(1906/1909)...(1895/1909), we
find there is approximately a 94.64 % chance thabsing two remainders out of 1909 possible
remainders will be different from each other aftroosing fifteen numbers. Clearly, this
probability will decrease as we choose more numioie that for our example of 1909, we
found our repeating remainders at our fourteerttaiion. We definitely “beat the odds” of
having our remainders repeat so early in the psoces

It is here that we note the significance/of It can be shown that a repeat in remainders

should happen with a 50% probability arouhd iterations. To find a 50% chance that there are

repeating remainders of the number 1909, one nwBftg-two iterations. This is approximately

equal toy1909 =~ 43.

All of this shows that we expect to find a divisdm around3/n iterations. Since we
expect our remainders to start repeating argunave can expect to find our divisor arodhd
The reason we expect this is because when we fiyda = (y —x;, n), we choose ow-values
in such a wayxX-values where thevalues are powers of 2) so that #x@alues become
exponentially larger than thevalues. This increases our chances of efficidmbyingd = (y —
X;, n), and thus leading to a divisor, hopefully one thgrime, of a number.

Pollard’s rho is a method we use for factoringiganumbers into their primes. We can do
this method by hand or via a computer programatt foe very efficient if we are “lucky” or very
inefficient if we are “unlucky.” It does not alwaygrk, as numbers such as 4, 6, and 12 cannot

be effectively factored into their primes. We casttour efficiency of Pollard’s Rho by using
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probabilistic analysis. Although not the most aéi of factoring methods, it is more efficient

than the very tedious Sieve of Eratosthenes.
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